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SUMMARY 

 

This thesis delves into the intriguing field of extraterrestrial and terrestrial drainage pattern analysis, 

shedding light on the hydrogeological and geomorphological histories of celestial bodies such as Earth, 

Mars, Venus, and Titan. The analysis encompasses both topographic and satellite images, each presenting its 

unique challenges and requirements. 

For topographical images, the study employs image segmentation techniques, specifically focusing on 

Canny's method with Optical Character Recognition filters, effectively removing symbols and legends from 

the images. When dealing with satellite images, Canny combined with anisotropic diffusion proves 

successful in mitigating background noise arising from graininess. 

 

The central objective of this research is the development of mathematical models to automate the 

segmentation process while preserving drainage network profiles and minimizing information loss. This is 

crucial for creating a consistent pre-processing phase that can be applied to extensive image datasets, 

facilitating the generation of a robust training set for classification using self-adaptive machine and deep 

learning approaches. 

In a judicious trade-off between automation and image quality, the study strikes a balance that allows for 

time-efficient pre-processing of large data volumes. The resultant images are then fed into deep learning 

models, integrating the extraction and classification phases into an objective and analytical framework. 

Despite initial challenges posed by limited training data, the similarity of drainage patterns, and noise in the 

images from automated segmentation, the research yields remarkably impressive results. 

 

The findings ultimately affirm the viability of deep learning as a powerful tool for data exploration in the 

realm of geomorphology and related fields. This work transcends the confines of terrestrial boundaries, 

offering valuable insights into the hydrogeological and geomorphological histories of planets and satellites, 

with the promise of opening new avenues for automated image analysis and data-driven discoveries in the 

cosmos. 
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INTRODUCTION 

 

DRAINAGE PATTERN NETWORKS 

 

Extraterrestrial and terrestrial drainage pattern analysis is an interesting topic because it allows us to 

understand the hydrogeological and geomorphological past of planets and satellites.  

In this work Earth, Mars, Venus, and Titan’s patterns have been taken in consideration through image 

segmentation, a field of image analysis specialized in the detection of patterns within images, based on a 

variety of mathematical methods, whose efficiency depends on the conditions and type of images. In this 

work, two types of images were addressed, respectively, topographic and satellite.  

 

In both cases, Canny's method (Canny, 1986) has been used with different filters to reduce noise and the one 

with Optical Character Recognition (Al Sayem A. et al. 2023) provided the best results for topographical 

images, being able to remove symbols and legends contained in the images.  

About satellite images, Canny with anisotropic diffusion showed good results in reducing background noise 

due to graininess.  

The main purpose of this work has been the search for mathematical models capable of automating the 

segmentation process, making the profiles of the drainage networks stand out from the rest of the image, 

minimizing the loss of information as well as the variation of the parameters.  

This aims to make the preparatory phase of the images (pre-processing) as self-consistent as possible, to be 

effectively applied to large volumes of images, allowing the generation of a valid training set for the 

classification of drainage patterns using self-adaptive methods, based on machine and deep learning 

paradigms (Donadio et al. 2021).  

 

In this work a trade-off has been achieved between automating the pre-processing phase given the large 

amount of data in a time efficient way and quality of the resulting images. These latter images have been fed 

to deep learning models, in which the extraction and classification phase is integrated within a more 

objective, analytical, and automatic framework.  

Despite the initial difficulties, due to the small number of training images available, the similarity between 

the different shapes of the drainage samples, as well as the noise in most images due to automatic 

segmentation, we obtained very promising results, confirming that automatic segmentation and deep 

learning-based classification are a robust framework for data exploration in geomorphology and related 

fields. 
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AN EXTRACTION AND CLASSIFICATION PROBLEM 

  

To study and reconstruct the morphological history of the planet of interest, it is noteworthy to analyze 

drainage pattern images to extract their profiles and therefore be able to determine the direction of flow, the 

depth, the approximated speed of the fluid flowing there, and other characteristics related to these structures 

(Burr et al. 2009; Burr et al. 2013). 

The efficiency of computers has been used to speed up this work and to obtain better results in the lattice 

profile extraction. 

The ideal technique for this purpose is segmentation, which allows the input image to be divided into various 

areas of interest, depending on the chosen method. In the following sections, the Canny algorithm will be 

explained in more detail, along with the main filters used in this project. As expected, different filters will 

result in different output images, sometimes for the better, sometimes worsening the result. 

 

The scientific problem of an unbiased classification of drainage networks is characterized by the two 

mentioned aspects, approached through Deep Learning (DL) in our research. Different from other methods, 

by adding data, the DL model reinforces the learning power based on its acquired experience, which is used 

to generalize the ability to classify new samples, thus improving the accuracy and reliability of the 

classification of new drainage patterns. Such method, directly applied to images, has the real potentiality to 

define a new, more objective classification of these complex natural elements, characterized by an irregular 

and asymmetrical geometry, thus contributing to a better characterization and analysis of terrestrial and 

extraterrestrial examples. In such a scenario, the primary objective of the present work is to classify the 

drainage networks in an unambiguous, reliable, and as automated as possible way. Unambiguous means 

guaranteeing the utmost accuracy in assigning the right class, in accordance, but also on a complementary 

base, with the broadest and most objective consensus provided by the community of experts in the field. To 

reach this consensus, this work intends to promote the "River Zoo" survey initiative, aimed primarily at 

involving the entire scientific community interested in the field and inspired by the well-known category of 

"citizen science projects".  

The idea behind such an initiative is mostly to solve the problem of the current lack of drainage network 

samples useful for facing the exercise of multi-class classification in a statistically consistent and balanced 

way. Therefore, multiple participation in the expert survey would be able to guarantee a more reliable 

assignment of the class to each sample, improving the quality and ensuring an incremental strengthening of 

the training set for DL models.  

The DL approach is also able to guarantee the repeatability, coherence, and consistency of classification, by 

maximizing the incremental acquisition of experience (incremental learning), thus ensuring the application of 

same and consolidated criteria to other drainage network samples over time. Furthermore, another significant 
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aspect of the presented method is to exploit the aseptic and complete information deriving directly from the 

analysis of the images, avoiding the use of potentially biased, incomplete, and ambiguous derived 

information, i.e., traditionally extrapolated from processed physical and environmental parameters.  

Finally, the method is intrinsically automated, thus able to minimize the human intervention in the 

classification process, relegating it to an a posteriori analysis and the scientific exploitation of the results 

obtained. Certainly, the long-term goal of the project, for which this work is a fundamental premise, is the 

multi-class classification using at least the taxonomy highlighted in Fig. 1. However, now, the intrinsic 

complexity of distinguishing between sub-classes due to the ambiguity in the morphology of the patterns and 

the subjectivity of the attribution of the class, does not allow to have a quantity and quality of examples for 

each sub-class sufficient to allow the multi-class experiment to be carried out. 

As is well known, the supervised paradigm of DL requires an adequate number of known examples for each 

sub-class and requires the fairest possible balance between the quantities of examples for each sub-class. 

Without this knowledge base, any data-driven method of classification would suffer from underfitting for the 

under-sampled classes and overfitting for the over-sampled ones. For these reasons, the present work was 

focused on testing and validating the proposed data-driven method on the reduced two-class problem to 

distinguish between two families of drainage network sub-classes named, respectively, dendritic and non-

dendritic.  

Moreover, without the experience acquired with this first case, it would be extremely difficult to analyze the 

results of the more complex multi-class experiment and identify the weaknesses of the method, disentangling 

the different contributions to the multi-classification error between data-induced errors from those induced 

by the DL models (Donadio et al.,2021). 

Fig.1 Main patterns of drainage networks: (a) dendritic; (b) sub-dendritic; (c) pinnate; (d) parallel; (e) radial; 

(f) rectangular; (g) trellis; (h) angular; (i) annular; (j) contorted. Hereinafter (a)–(c) patterns are related to 

dendritic forms (D), (d)–(j) to non-dendritic ones (ND). 

https://www.nature.com/articles/s41598-021-85254-x#Fig1
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AIMS 

 

The aim of this work encompasses several key objectives, which collectively contribute to the advancement 

of river hydrogeological profile extraction and geomorphological feature classification. These objectives are 

the enhancing hydrogeological profile extraction: the primary objective is to improve existing methods for 

extracting hydrogeological profiles of rivers using the Edge Detection technique.  

This enhancement involves refining the precision and clarity of the extracted profiles, ensuring that the 

contours are distinct and well-defined. Achieving this goal will facilitate more accurate geomorphological 

analysis. Then, the exploration of Deep Learning approaches.  

 

In addition to traditional Edge Detection techniques, this study explores the application of deep learning 

methods to extract hydrogeological profiles. DL models have demonstrated remarkable capabilities in image 

feature extraction and pattern recognition. The aim is to develop novel methods that leverage deep learning 

to automate the extraction process, potentially leading to even more pronounced and detailed profile lines. 

Another overarching objective is to automate the extraction of hydrogeological profiles entirely.  

By achieving automation, the process becomes more efficient and less reliant on manual intervention. This 

automation contributes to expediting the analysis of river geomorphology.  Geospatial Image Classification 

played an important role beyond profile extraction. This work delves into the broader realm of geospatial 

image classification.  

 

The study extends to the automatic segmentation and classification of various geomorphological features 

within satellite and topographic images. This includes distinguishing dendritic river patterns from mixed 

patterns and other relevant classifications. The comparative analysis allowed us to assess the efficacy of 

automated segmentation and classification; this research conducts a comparative analysis. It involves 

comparing the results obtained through automated techniques with those from manual segmentation 

performed by a colleague. The aim is to discern the trade-offs and advantages offered by automation in terms 

of classification accuracy, efficiency, and precision.   

 

In the end, preliminary stages in geomorphological analysis is important to recognize that the extraction 

process involves several preliminary stages to obtain a well-defined contour. These stages encompass data 

preprocessing, noise reduction, and image enhancement. The aim is to ensure that the data is optimally 

prepared for subsequent analysis, which is essential for accurate geomorphological assessments.  By 

addressing these aims and objectives, this research aims to contribute to the field of geomorphological 

analysis by leveraging advanced techniques to streamline the extraction and classification of hydrogeological 

profiles and other relevant features. The outcomes are expected to provide valuable insights into the potential 

benefits of deep learning in geospatial analysis and feature recognition. 
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MATERIALS AND METHODS 

 

A COMPREHENSIVE REVIEW OF THE CANNY EDGE DETECTION ALGORITHM AND USAGE OF 

DIFFERENT FILTERS  

 

The Canny edge detector is an edge detection operator that uses a multi-stage algorithm to detect a wide 

range of edges in images. It was developed by John F. Canny in 1986. Canny also produced a computational 

theory of edge detection explaining why the technique works. It is a technique to extract useful structural 

information from different vision objects and dramatically reduce the amount of data to be processed. 

The process of Canny edge detection algorithm can be broken down to five different steps: 

I) Apply a filter to smooth the image to remove the noise. In this case, I used anisotropic 

diffusion, Bregman and non-local means filters. 

II) Find the intensity gradients of the image and its magnitude. The gradients provide information 

about the intensity variations and changes in the image. 

III) Apply gradient magnitude thresholding or lower bound cut-off suppression to get rid of spurious 

response to edge detection. 

IV) Apply double threshold to determine potential edges. To make an automated calculation, I used 

median and standard deviation. 

V) Track edge by hysteresis: Finalize the detection of edges by suppressing all the other edges that 

are weak and not connected to strong edges (fig.2). 

 

Fig.2 Flowchart of the traditional Canny algorithm 

The anisotropic diffusion filter (Perona P., Malik J. 1987) is based on a diffusion process, a kind of non-

linear smoothing. The diffusion speed can be adjusted in a way that it does not affect the edges as much as 

other filters, hence preserving them. It requires input parameters; each one needs to be tuned correctly to 

produce a great image:  
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- Niter: determines how many iterations of the algorithm will be executed. 

- Kappa: is the conduction coefficient, varying between 20 and 100. If low, diffusion across step edges 

is blocked, because small intensity gradients can block conduction.  

- Gamma: controls the speed of diffusion. Max value 0.25 for stability. 

- Option: if 1, the first Perona-Malik diffusion equation is used, which favors high contrast edges over 

low contrast ones; if 2, the second equation is used, which favors wide regions over smaller ones. 

- Sigma: if <0 then Gaussian Noise removal is applied as well. 

There may be several techniques to make this method automated. The one that I used is based on the search 

for every possible combination of the 5 parameters earlier described for each of the 161 images, in fixed 

intervals. Each parameter varies in a list of three elements, in which the first and the third value deviate 

equally from the second, respectively by subtracting and adding a numerical constant.  

From each of 23 satellite images, I got 34 = 91 different outputs, for a total of 2093. After that, one can 

perform a statistical analysis on the parameters with different indexes such as average, median, mode, 

standard deviation to find what kind of combination best fits with most of the 161 images. After several 

experiments, the method is efficient in revealing the rivers but not in reducing background noise. 

 

The Bregman denoising filter (Deng G., Broadbridge P. 2019) is a mathematical technique based on the 

Bregman distance, which is a measure of dissimilarity between two probability distributions: noisy and 

denoised images. The method aims to minimize the Bregman distance between a noisy image and its 

denoised version by iteratively updating the denoised image. It considers the non-linearity and geometry of 

the image data, enabling more effective and accurate processing and analysis of images. 

The non-local means filter (Buades A. 2005) performs non-local means denoising on grayscale or RGB 

images. It is based on the principle that similar patches within an image exhibit similar intensity pattern and 

leverages this self-similarity property to estimate the original, noise-free pixel values. It is a non-Destructive 

Denoising: unlike some denoising methods that may blur or distort edges and boundaries, NL means 

denoising generally maintains sharp edges and boundaries in the denoised image. It achieves a good balance 

between noise reduction and preservation of important image features. The filter requires parameter tuning: 

the denoising strength can be adjusted by controlling parameters such as the patch size, similarity measure, 

and filtering strength that have been made constant. 
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CANNY WITH OPTICAL CHARACTER RECOGNITION    

In image segmentation, Optical Character Recognition (OCR) is used to enable computers to "read" and 

understand text that appears in images, making it possible to extract information from documents, images 

with embedded text, or any visual content that contains textual information (fig.3).  

 

Fig. 3 Phases of character recognition process. 

 

 

In the topographical images, it has been useful in recognizing letters, symbols, and legends. For my purpose, 

I have implemented a method in which in the first part text recognition is done, while in the second part the 

edge detection is performed. Here is the algorithm: 

I) Set a confidence level: too low or too high won't let the OCR detect all the text or worse, detect 

some elements as characters while clearly, they are not text. 

II) Select a Page Segmentation Mode (6 & 11), then perform OCR. PSM 6 focuses on finding 

blocks of columned text. This pattern is often used to write legends and general symbology in 

topographical images. PSM11 is used to recognize "Sparse text with no particular order".  

III) Letter and phrases are covered by white rectangles to remove them. 

IV) Edge detection with Canny: threshold with median which is one of the most stable indicators of 

a probability function. It is the closest value to the distribution (center) considering a first-order 

distance. 

V) Detect contours using cv2. 

VI) Perform a contour shape evaluation and writing on mask that basically accumulates everything 

to then remove (if needed). 

VII) Subtract mask from edged image and invert colors. 
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DEEP LEARNING APPROACH 

In the realm of Artificial Intelligence (AI), Machine Learning (ML) has played a crucial role in solving 

complex problems that can be challenging for humans but relatively simple for computers. This has become 

particularly important in scientific research due to the vast and diverse datasets now available. In scientific 

applications, the quality of ML models depends on how well they represent data. DL, a subset of ML, has 

become popular because it not only extracts meaningful information from data but also makes accurate 

classifications. This is especially useful when experts can recognize patterns in images, but manually 

analyzing each image is impractical or when capturing and categorizing all relevant information numerically 

is challenging.   

For the classification task, supervised DL methods have been employed, utilizing two well-established 

convolutional neural network architectures, VGGNet (fig.4) and AlexNet (fig.5). These models were utilized 

to assign class labels to the collected Earth examples, distinguishing between two classes: dendritic (D), 

including subtypes such as sub-dendritic, pinnate, and high-relief pinnate, versus not-dendritic (ND), 

encompassing other subtypes such as trellis, parallel, rectangular, angular, annular, radial, centripetal, 

herringbone, and barbed.  

To ensure an ample supply of training samples, we applied data augmentation techniques to enhance the 

model's training capabilities.  

This augmentation process involved resizing all images to a uniform 540 × 540 pixels and generating five 

additional samples for each original image through three 90-degree rotations, 180-degree rotations, 270-

degree rotations, and two flipping operations along the horizontal and vertical axes.  

This approach not only increased the dataset size but also made the trained model invariant to different 

orientations of drainage networks within the images. Additionally, we vectorized the images to represent the 

network morphology in a simple yet informative and quantitative form, converting them to grayscale to 

facilitate the extraction of the network pattern.  

Subsequently, the images underwent a cleaning process to eliminate residual noise and to restore parts of the 

reticle that may have been partially lost during the conversion. Then, two separate experiments were 

conducted to assess the performance of the models described above.   
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Fig. 4 CNN VGGNet (Simonyan K., Zisserman A. 2014). 

  

Fig. 5 CNN Alexnet (Krizhevsky A., Sutskever I. 2012). 

 

In this study, various DL models and optimizers were tested, including VGGNet + ADAM, VGGNet + 

Random Forest, AlexNet + ADADELTA and others. These models automatically extract features from 

images and then classify them based on those features. The classification results are presented as probability 

matrices, with each image assigned probabilities for belonging to different classes.  

The models are trained using the cross-entropy error function (Goodfellow et al. 2016): 

 

𝐶(𝑦, y̅) = ∑ (𝑦𝑖 ∗ ln(�̅�𝑖) + (1 − 𝑦𝑖) ∗ ln (1 − 
𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑖=1
�̅�𝑖))                                   (1) 

 

 

Three classification algorithms or optimizers — Adagrad, Adadelta, and ADAM—were evaluated. The 

assessment included metrics such as precision, recall, and F1-score, which help measure how accurately the 

models classify images. 
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Recall and precision are the two most interesting estimators. Recall measures the ability to detect True 

Positive samples, while precision estimates the ability to select a set of candidates of a single class, thus 

minimizing the level of induced contamination from classification errors i.e., the presence of false positives 

and false negatives. 

Assuming TP the number of samples correctly classified as class P, TN the number of samples correctly 

classified as class N, FP the set of samples incorrectly classified as class FP while considering FN the 

samples incorrectly classified as class N, and given P and N the sizes of respectively class P and class N, the 

metrics can be calculated as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (3) 

𝐹1 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
    (4) 

 

Furthermore, it is often useful building a Confusion Matrix to graphically evaluate those metrics. Although 

this technique is quite diffused, here different graphic means of visualization have been used, as will be 

discussed later. For reference, fig.6 illustrates an example of Confusion Matrix. 

 

Fig.6 Example of a confusion matrix for a two-class problem. 
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The quality of classification is based on the best compromise between these two estimators. Statistical 

evaluation was completed by introducing ROC diagrams (Receiver Operating Characteristic; Hanley & 

McNeil 1982), whose curves allow us to evaluate the level of classification as the discrimination threshold 

attributed to distinguish membership of the two classes. The value total statistic is measured by the area 

under the ROC curve (AUC), where an area equal to 1 indicates a perfect classification, while a value of 0.5 

indicates a random classification (fig.7). 

 

Fig.7 Receiver Operating Characteristics (ROC curve) 

 

 

In this project, a total of 165 images have been used to assess the models’ performance with noisy and 

imperfect data. For comparison, the work prior to this one achieved near-perfect results using DL models 

trained on manually segmented images. Of course, automatic segmentation produces worse results than 

manual, nevertheless we were able to extract rivers’ profile with enough accuracy to successfully train the 

models, subsequently achieving good results while testing. The focus of this work was to determine whether 

the two models could perform reasonably well on dataset of automatically segmented images. The outcome, 

as will be discussed later, was good, obtaining a precision of around 80% ~ 90% percent while training, and 

producing ROC curves situated in the top-left portion of the chart. 

As for the datasets, the models need three sets of images. The first one, referred to as training set, is typically 

the largest; here, 75% of the 165 images have been used to train the model, giving a baseline of 124 training 
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images. The smallest dataset, known as validation set, is not mandatory to use, but it is useful to evaluate 

real-time performance of the classification algorithm while it is still training; in this thesis the validation set 

is composed of 7 images, roughly 4% of the total. Finally, there is the testing set, taking up the rest of the 

images, 34 in this case. The testing set is the real evaluation method of a model’s analysis, given that a DL 

algorithm (in this case a binary classifier) has the responsibility of labeling each image in this set with the 

corresponding class of rivers. The better the model’s architecture and the optimizer, as well as the image 

quality, the closer the classification will be to the ground truth. 

Once the datasets are created, data augmentation algorithms are responsible for increasing the number of 

training samples. Given the size of the training set used in this project, the augmentation phase outputs more 

than 700 images. Since the entire dataset has to be loaded into RAM (Random Access Memory) memory to 

be used, and that AlexNET (the most complex architecture used in this work) can have Dense Convolutional 

Layers of up to 4096 cells, it is obvious that such a dataset can heavily impact the CPU (Central Processing 

Unit) of a computer. For this reason, it is extremely recommended to run the algorithm on Nvidia GPUs 

(Graphic Processing Units), to take advantage of the parallel processing capabilities of CUDA (Compute 

Unified Device Architecture) cores and Tensors. 

As a reference, I have used a Nvidia RTX 3060 GPU with 12GB of dedicated VRAM (Virtual RAM), and 

the datasets barely fit in the memory, but the algorithm ran extremely fast even at small batches, taking a 

consistent 5 seconds for each training epoch. 

In the next section, the results will be presented. As mentioned before, different optimizers have been used, 

each time with different parameters, especially focusing on batch size and epochs count. The smaller the 

batch size, the more accurate the learning will be, at the expense of loading the entire training set into 

memory at run time; higher batch sizes provide faster learning at the expense of overall accuracy. As for 

epochs, they correspond to the iterations of the learning algorithm. It must be noted that more epochs do not 

necessarily mean better overall results.  

The model could be learning so much on the same data that it could get confused and “too confident” that 

most of the images belong to just one class, producing incorrect classification. This phenomenon is called 

overfitting.  

The opposite, underfitting, occurs when the model learns so little that it almost “guesses” its predictions. As 

the reader will soon see, I have found optimal values of these two parameters, thanks to a process of 

optimization called Grid Search. 
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RESULTS 

 

In this section, I have provided a concise overview of the results obtained from the automated segmentation 

of river drainage patterns and the subsequent classification achieved through DL models. The key highlights 

of this section include the identification of the most effective automated segmentation method and the 

impressive accuracy achieved when using DL models to analyze these segmented images. 

 

IMAGE PRE-PROCESSING AND FILTRATION 

 

In this part, we present a preliminary stage of segmentation, featuring a selection of 165 satellite and 

topographical images that have undergone preprocessing. These images were resized to a uniform size of 

540x540 pixels and converted from RGB to grayscale to facilitate the subsequent segmentation processes. 

Prior to segmentation, these preprocessed images were filtered using four distinct methods. These filtered 

images serve as the foundation for our comprehensive segmentation analysis. 

Before presenting the results of this preliminary phase, it must be noted that all the resulting images have 

been resized to 540x540 pixel to have the same size as the input dimension of the Neural Networks. For most 

images, a stretching has been performed, while some images have been padded to avoid loss of important 

details. 

 

A B C D

 

Fig. 8 A) Original topographic image of Bunta river B) Bunta river filtered with Bregman denoising filter  

C) Bunta river filtered with non-local means  
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Fig. 9 A) Original satellite image of Gale River B) Gale river filtered with Bregman denoising filter  

C) Gale river filtered with non-local means 

 

In our extensive analysis of 165 images, it became evident that the Bregman and NL-means filters exhibited 

a wide range of performance, yielding both suboptimal and satisfactory results. Specifically, these filters 

produced favorable outcomes for some images while falling short for others (Fig.8-9). 

After several analysis, we found that none of the filters were suitable for widespread adoption in our 

segmentation approach, as their inconsistent performance across image types would likely introduce 

confusion to the subsequent DL models. 

Nevertheless, it's worth mentioning that in the upcoming sections, we will introduce a novel method called 

OCR that demonstrated high efficiency across a broader spectrum of images. This promising approach 

offered the potential to address the segmentation challenges posed by diverse image types, further enhancing 

the reliability of our DL models. 
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IMAGE SEGMENTATION 

 

In this section, I present a set of segmented images obtained through the Canny edge detection method, 

following the application of various filters as a preliminary step. These segmented images serve as 

illustrative examples, building upon the previously discussed filtered images, showcasing the effectiveness of 

the segmentation process in highlighting distinct features within the images. 

 

A B C D

MD0

Fig.10 A) Original satellite image of Gale river B) Bunta river image analyzed with Bregman filter and 

segmented with Canny method C) Bunta river analyzed with non-local means filter and segmented with 

Canny D) Bunta river analyzed anisotropic filter and segmented with Canny 

 

 

 

Fig.11 A) Original satellite image of Gale river B) Gale river image analyzed with Bregman denoising filter 

and segmented with Canny method C) Gale river analyzed with non-local means filter and segmented with 

Canny D) Gale river analyzed anisotropic filter and segmented with Canny 
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As we examine these images, it becomes evident that the application of the Bregman denoising filter did not 

yield the expected results. Despite its potential to minimize the dissimilarity between noisy and denoised 

images, as measured by the Bregman distance, this method proved less effective in our specific context. The 

challenges encountered with the Bregman filter might be attributed to the unique characteristics of our 

images or the interactions with subsequent segmentation processes. It is essential to acknowledge that the 

performance of this filter can vary depending on the specific nature of the input data and the processing steps 

involved. In our case, the results fell short of our expectations, prompting further exploration of alternative 

image enhancement and segmentation techniques. 

 

Meanwhile, we observe that the application of the non-local means filter, with constant parameters, has 

produced noteworthy results. This filter operates on the principle that similar patches within an image share 

common intensity patterns and leverages this self-similarity property to estimate the original, noise-free pixel 

values. One of the distinct advantages of this method is its non-destructive denoising nature. Unlike some 

denoising techniques that may blur or distort edges and boundaries, the non-local means filter generally 

preserves sharp edges and boundaries in the denoised image. 

It is important to note that, with constant parameters, the non-local means filter has proven effective in 

enhancing a substantial portion of our images. However, it did not exhibit uniform performance across all 

165 images. This variation in results may be attributed to differences in image characteristics and noise 

levels. 

Basically, as we can see in these images, the non-local means filter with constant parameters has successfully 

achieved a good balance between noise reduction and the preservation of important image features. 

However, its performance may still vary, underscoring the potential for further optimization to maximize its 

effectiveness on different types of images. 

 

In the end, we see that it's apparent that the anisotropic filtering and subsequent segmentation using the 

Canny edge detection method have effectively highlighted the river patterns within the images. The 

anisotropic filter has proven efficient in revealing these intricate river structures. 

In particular, the anisotropic filters demonstrated their efficacy in enhancing satellite images, delivering 

notably improved results. However, they proved less efficient when applied to topographical images, 

primarily due to their inability to effectively eliminate noise, such as characters and letters. Given the 

predominance of topographical images in our dataset compared to satellite images, we decided against 

adopting anisotropic filters for the overall segmentation process. 



 
 

21 
 

 

However, it's important to note that the same efficiency in revealing river patterns has limitations when it 

comes to removing background noise effectively. The presence of residual noise and artifacts in the 

segmented images is noticeable, which poses challenges for further processing, particularly when feeding 

these images into DL models (Fig.10-11).  

 

A B

 

Fig.12 A) Original topographic image of Bunta river B) Bunta river analyzed with OCR method and 

segmented with Canny  

 

A B

 

Fig. 13 A) Original satellite image of Gale River B) Gale river analyzed with OCR method and segmented 

with Canny 

 

As part of our ongoing investigation, we delved into the efficacy of the OCR (Optical Character 

Recognition) method in image enhancement and segmentation. Our aim was to understand how this method 

performs in the context of our diverse image dataset, comprising both topographical and satellite images. 
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However, our findings took a different turn when we applied the OCR method to satellite images. These 

images, in contrast to topographical ones, lacked the presence of characters, letters, legends, or similar 

textual elements. As a result, the OCR method proved unsuitable for this specific image type (Fig.12-13). 

Considering these notable distinctions in performance, we made a strategic decision. We chose to utilize the 

segmented images generated through the OCR method, in conjunction with the Canny edge detection 

method, as inputs for our DL models. This decision allowed us to leverage the strengths of OCR in 

enhancing topographical images while accommodating the unique characteristics of satellite imagery. The 

combined approach served as a vital step in streamlining the DL model training process. 

 

DEEP LEARNING 

 

Before discussing the results, let’s first take a look at the input images. The following table shows the 

drainage pattern for each river in light green. This is also called ground truth, and derives from an 

evaluation of an expert. Dendritic rivers are labeled with a D with a light blue background, while non 

dendritic (mixed) patterns are labeled with a ND and orange background. 

Name Label Name Label Name Label Name Label 

Achankovil D Huasco D NagtonVallei ND Tanaro D 

Aconcagua ND HuygensCrater D Neyyar ND Tarali ND 

Adda D Idice D Niger D TerraCimeria D 

Adige D Indus D Nile D Tevere ND 

AeolisPlanum ND IndusVallei ND NirgalVallis ND Thames D 

AlAbiadh ND Isonzo D Ob D Ticino D 

Amazon ND Itata D Oder D Tigri D 

Amur D Jharkhand ND Ohio D Titan ND 

AnjaniandJhiri ND Jordan D Olenek D Titan2 ND 

ArabiaQuadrangle D Kadalundi D Ombrone D Toaya D 

Arno D Kadvi ND Orr ND Tobol D 

Bahomoleo D Kallada D OsugaVallis D Turkey ND 

Bangga ND Karamana D Ottawa ND TyrasValley ND 

Basento D Karuvannur ND Pamba D Umbro ND 

Bharathapuzha ND Kaveri D Paraguay ND Uruguay D 

Biobio D Kentucky ND ParaibadoSul D Vamanapuram ND 

Blanchard ND Kolyma D Parana D Varuna ND 

Bouquet ND Krishna D ParanaValley ND VenereC ND 
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Bradano D Kuttiyadi ND Periyar D VenereD ND 

Bunta ND Lena D Petrace ND VenereE ND 

Candelaro ND Liri D Piave D VenereF ND 

CaptinaCreek ND LockrasVallei D Pinamula ND VenereG ND 

Chalakudy D Loire ND Pinios D VenereH ND 

Chaliyar ND Luni D Po ND Vergas ND 

Chari D MaadimVallis ND Powder ND Vishwamitri ND 

ChrysePlanitia D MaadimVallis2 D Rapel ND Vistula D 

Congo ND Mackenze D Rhine D Vjosa D 

Cususvalles D Mahe D Rhone ND Volga D 

Danube D Maipo ND Russian ND Volturno D 

Devoll D Malino ND Sabarmati D Wabash ND 

Dniester D Manimala D Saitama ND Wadiquena ND 

Don ND Mars1 ND SaludaReevy ND WarregoValles2 D 

Drin ND Mars2 ND SanJoaquin D Wheeling ND 

EberswaldeDelta D Mars3 D Sava D WolfBellCanyon D 

EberswaldeDelta2 D Maule ND Schiapparelli ND Wyoming ND 

Ebro ND Meenachil D Seine ND Yangtze D 

EfestoFossae D Mekong D Simeto ND Yellowstone ND 

Elqui ND Meuse D Singkoyo D Yenisey D 

Eufrate D Mississippi ND Snake ND Zambezi D 

Gale D Missouri D StJoseph D   

Ganges ND Moreau D Susquehanna ND   

HuangHe D Muvattupuzha D Tambun ND   

Table 1. Ground truth of drainage patterns. D= dendritic; ND= non-dendritic 

 

In this section, I will show some of the results of our analysis using two DL models, VGGNet and AlexNet, 

for river drainage pattern classification. We systematically varied hyperparameters such as batch size, 

epochs, optimizers, kernel size, number of neurons and layers leading to diverse model performances. Tables 

accompany each model to outline the chosen hyperparameters and performance metrics, while ROC curves 

visually depict model discrimination capabilities. This approach provides a comprehensive view of how 

hyperparameters influence model performance in classifying river drainage patterns. 
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VggNET – exp 1 

Optimizer Adam 

Learning rate 0.0001 

Kernel size 3x3 

N. layers 7 

Dense layer dimension 4096 

N. neurons 4096 

Batch size 20 

Epochs 10 

Table 2. VggNet model  hyperparameters                   Fig 14. ROC curve related to exp. 1 

 

 Precision Recall F1-score 

Dendritic 65% 65% 65% 

Mixed 68% 68% 68% 

Table 2.1 Evaluation metrics of experiment 1 

 

 

 

 

 

 

 

Table 3. VggNet model  hyperparameters          Fig 15. ROC curve related to the exp. 2  

 

 Precision Recall F1-score 

Dendritic 69% 65% 67% 

Mixed 70% 74% 72% 

Table 3.1 Evaluation metrics of experiment 2 

 

VggNET – exp 2 

Optimizer Adam 

Learning rate 0.0001 

Kernel size 3x3 

N. layers 7 

Dense layer dimension 4096 

N. neurons 4096 

Batch size 1 

Epochs 200 
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Table 4. VggNet model hyperparameters   Fig 16. ROC curve related to exp.3 

 

 Precision Recall F1-score 

Dendritic 75% 71% 73% 

Mixed 75% 79% 77% 

Table 4.1 Evaluation metrics of experiment 3 

 

 

 

 

 

 

 

 

 

 

 

Table 5. VggNet model hyperparameters   Fig 17. ROC curve related to exp.4  

 

 Precision Recall F1-score 

Dendritic 75% 53% 62% 

Mixed 67% 84% 74% 

Table 5.1 Evaluation metrics of experiment 4 

 

VggNET – exp 3 

Optimizer Adam 

Learning rate 0.0001 

Kernel size 3x3 

N. layers 7 

Dense layer dimension 4096 

N. neurons 4096 

Batch size 1 

Epochs 20 

VggNET – exp 4 

Optimizer Adadelta 

Learning rate 0.5 

Kernel size 3x3 

N. layers 7 

Dense layer dimension 4096 

N. neurons 4096 

Batch size 1 

Epochs 20 
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In a series of experiments with the VGGNet model using the Adam optimizer, we systematically explored 

hyperparameters to optimize the classification of river drainage patterns, considering the challenges posed by 

a dataset containing noisy and complex images.  

 

 

Parameter variations: 

Learning rate (constant at 0.0001): We maintained a lower learning rate to ensure training stability, 

mitigating the risk of overshooting minima, especially with noisy data. 

Neural Network Depth (minimum 7): To address noisy images, we increased the neural network's depth by 

adding more dense layers, enhancing its capacity to discern intricate patterns. 

Batch size (varied between 1 and 20): To address noisy images, we increased the neural network's depth by 

expanding dense layers, enhancing its capacity to discern intricate patterns. 

Epochs (varied between 1 and 200): Varying the number of training epochs allowed us to observe how the 

model behaved under different training durations. 

Stride (kept constant at 1): Some parameters, like the stride, were kept constant during the experiments. 

 

Performance metrics: 

Precision reflects the accuracy of positive predictions (equation 2). 

Recall measures the model's ability to capture all positive instances (equation 3). 

F1-score provides a balanced assessment by harmonizing precision and recall (equation 4). 

 

Experiment results: 

1. Experiment 1 yielded precision and recall values of around 65% to 68% for both Dendritic and Mixed 

patterns, indicating reasonably accurate positive predictions. 

2. Experiment 2 showed improved performance, with an increased F1-score (67% for Dendritic and 72% for 

Mixed), demonstrating a better balance between minimizing false positives and capturing true positives.  

3. Experiment 3 exhibited further improvements, achieving precision and recall values of up to 75% and F1-

scores of 73% for both pattern types. 
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4. Experiment 4 introduced the Adadelta optimizer, resulting in a significant recall increase (84%) for 

Mixed patterns but a decrease (41%) for Dendritic patterns, with an F1-score of 52% for Dendritic and 71% 

for Mixed. 

ROC curve analysis: 

Experiments with the Adam optimizer consistently achieved true positive rates (TPR) between 0.6 and 0.8, 

with corresponding false positive rates (FPR) around 0.3. This indicated the model's ability to accurately 

identify positive instances while maintaining a reasonably low rate of false positives. 

Experiment 4 with the Adadelta optimizer produced a remarkable TPR exceeding 0.8 but with a slightly 

elevated FPR around 0.5, highlighting the optimizer's effectiveness in handling complex and noisy datasets. 

In summary, these experiments provided valuable insights into parameter variations and their effects on 

model performance. Experiment 4, utilizing the Adadelta optimizer, showed promising results in accurately 

identifying Mixed patterns but with room for improvement in capturing Dendritic patterns. These findings 

contribute to the optimization of river drainage pattern classification in noisy images. 

Moreover, we conducted a comparative analysis with a previous study that employed manual segmentation 

techniques. Interestingly, our approach, while yielding slightly lower TPR and higher FPR than the manual 

segmentation method, showcases competitive performance. This outcome is particularly noteworthy, as it 

suggests that our automated approach, despite its challenges, holds promise in handling noisy images and 

achieving commendable results. 

It's essential to acknowledge that, in a comparative context, our experiments with automated segmentation 

yielded discrete results when contrasted with the previous work conducted by a scientific group using 

manual segmentation. In the latter, the absence of noise in the images allowed for more accurate results. 

However, it's crucial to note that our automated experiments hold promise, as they achieved commendable 

performance despite the inherent challenges of noisy images. 

Our methodical exploration of hyperparameters, coupled with the introduction of the Adadelta optimizer 

with its higher learning rate, resulted in an experiment that outperformed the others, with a TPR exceeding 

0.8. These findings underscore the intricate relationship between hyperparameters and optimizer selection 

and highlight the potential for optimized configurations to yield remarkable results in the classification of 

river drainage patterns, although they may not reach the same accuracy as manual segmentation in pristine 

conditions. 
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Table 6. AlexNet model hyperparameters    Fig 18. ROC curve related to exp. 5 

 

 Precision Recall F1-score 

Dendritic 70% 41% 52% 

Mixed 62% 84% 71% 

Table 6.1 Evaluation metrics of experiment 5 

 

 

 

Table 7. AlexNet model hyperparameters    Fig 19. ROC curve related to exp. 6 

 

 Precision Recall F1-score 

Dendritic 82% 53% 64% 

Mixed 68% 89% 77% 

Table 7.1 Evaluation metrics of experiment 6 

AlexNet – exp 5 

Optimizer Adam 

Learning rate 0.0004 

Kernel size 3x3 

N. layers 8 

Dense layer dimension 4096 

N. neurons 4096 

Batch size 20 

Epochs 80 

AlexNet – exp 6 

Optimizer Adam 

Learning rate 0.0004 

Kernel size 3x3 

N. layers 8 

Dense layer dimension 4096 

N. neurons 4096 

Batch size 20 

Epochs 40 
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In the evaluation of AlexNet models with our automatic segmented images, noteworthy results were 

obtained, particularly considering the inherent noise present in the dataset. 

In experiment 1 (Figure 18) exhibited a false positive rate (FPR) of approximately 0.6 and a true positive 

rate (TPR) of approximately 0.85. The relatively elevated FPR could be attributed, in part, to the utilization 

of a high batch size. A larger batch size, while increasing computational efficiency, can introduce some level 

of granularity in the training process, potentially leading to suboptimal performance. Nonetheless, the results 

remained commendable, given the challenging dataset. 

In experiment 2 (Figure 19) showcased an even more remarkable performance, characterized by a TPR of 

approximately 0.9 and an FPR of approximately 0.4. This impressive result can be attributed to several 

factors. Firstly, the consistent use of the Adam optimizer effectively handled the dataset's complexities. 

Secondly, the architectural depth of AlexNet, exemplified by the network's eight layers, underscored the 

intrinsic power of AlexNet in learning hierarchical features and capturing intricate patterns. 

Furthermore, it is crucial to highlight the substantial size of the dense layers within AlexNet. These layers, 

with a high number of artificial neurons, significantly contributed to the model's enhanced discriminative 

capacity compared to previous experiments conducted by a scientific group with manually segmented 

images. The amalgamation of architectural depth and substantial dense layers fortifies AlexNet's position as a 

formidable architecture for addressing complex computer vision tasks, especially when confronted with 

noisy datasets. 

In summary, the AlexNet experiments demonstrated remarkable performance in classifying river drainage 

patterns in noisy images. Experiment 2 exhibited an impressive ability to correctly identify positive instances 

while maintaining a relatively low false positive rate, showcasing the power of AlexNet's architecture and 

substantial dense layers in handling complex computer vision tasks. 

Finally, as a last significant comparison experiment, I ran the VggNET model with predetermined training 

and testing set. As for the training phase, only topographical images have been chosen, the ones present in 

the above-mentioned work prior to this one, in which those models were tested for the first time. It is 

noteworthy saying that in those past experiments, the models were trained on 131 manually segmented river 

images. This time I took the same 131 images, but automatic segmentation was applied to them, yielding 

discrete results in terms of quality, as already discussed in the “Image segmentation” subparagraph of this 

section. Of the 131 total images, 90% were reserved for training and only 10% have been used for validation. 

To really rest the model’s performance, a VggNET instance has then been tested against the 34 satellite 

images I collected, mainly from extraterrestrial bodies. 

The results show similar performance to the previous experiments, indicating consistency between learning 

and testing patterns of VggNET. Given that AlexNET has a similar architecture to VggNET, we can assume 
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that the results would be similar. Unfortunately, due to technical reasons, I could not test this theory, although 

it is quite evident that this is somewhat always true. 

 

 

 

 

 

 

 

 

Table 8. VggNET model hyperparameters   Fig 20. ROC curve related to exp. 7 

 

 Precision Recall F1-score 

Dendritic 67% 78% 72% 

Mixed 69% 56% 62% 

Table 8.1 Evaluation metrics of experiment 7 

 

 

 

 

 

 

 

 

 

 

 

 

VggNET – exp 7 

Optimizer Adam 

Learning rate 0.001 

Kernel size 3x3 

N. layers 7 

Dense layer dimension 4096 

N. neurons 4096 

Batch size 20 

Epochs 100 
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DISCUSSION 

 

In this thesis, we embarked on a comprehensive exploration of image segmentation and classification 

techniques for terrestrial drainage networks and expanded our investigations to solar system bodies. Our 

primary goal was to develop robust methodologies capable of extracting and classifying river drainage 

patterns from diverse and noisy datasets. 

The thesis began with an in-depth evaluation of segmentation methods, ultimately identifying a tailored 

approach that effectively removed artifacts from topographical images, setting the stage for subsequent 

analysis. 

We then ventured into the domain of DL models, conducting systematic experiments with various 

hyperparameters and optimizers. The Adam optimizer emerged as a powerful choice, demonstrating 

impressive results with a high true positive rate (TPR) while maintaining a reasonable false positive rate 

(FPR). We explored two DL architectures, AlexNet and VGGNet, and found that AlexNet, with its eight 

layers and substantial dense layers, outperformed VGGNet, particularly excelling in handling complex 

computer vision tasks. 

In comparison with previous manual segmentation work, our experiments yielded discrete results. However, 

our approach showed promise, especially considering the inherent challenges of noisy images. The synergy 

of architecture depth, dense layer size, and optimizer selection played pivotal roles in achieving 

commendable results. 

This work represents a pioneering effort in the field, offering optimized segmentation methods and 

showcasing the potential of DL models in automated classification, even in noisy datasets. It opens new 

horizons for interdisciplinary exploration and objective classification in the study of geomorphological 

processes and beyond. 
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CONCLUSIONS 

 

This pioneering work, while revealing some residual gaps, holds the promise of becoming a valuable tool to 

support the endeavors of geomorphologists, naturalists, and similar professionals. It offers a compelling 

alternative to traditional methodologies.  

Despite initial challenges, the performance achieved through DL confirmed its capability to be applied to 

drainage patterns classification. It is important to note that, given the vast number of possible hyperparameter 

combinations, these results should be seen as a preliminary investigation, rather than a definitive outcome.  

 

Further exploration of these parameter combinations, coupled with a more statistically consistent dataset, 

may hold the potential for even more significant advancements. Specifically, ongoing research is dedicated 

to enhancing automatic segmentation methods.  

These improvements aim to refine the accuracy and efficiency of the segmentation process, ultimately 

yielding more precise representations of river drainage patterns, thus reducing the noise injected into the DL 

model training sets. 

 

The objective recognition of river patterns enhances the study of geomorphological processes, which holds 

multidisciplinary importance. Taking the next step, standardizing classification through AI and expanding 

DL application, we plan to investigate a multi-class approach, tailoring classifications to specific drainage 

pattern types.  

 

Moreover, we aim to initiate the search for an international nomenclature (a form of systematic naming) that 

uniquely identifies each morphology worldwide. This would facilitate a global focus on terrestrial processes 

and their relationships, particularly with Martian counterparts and those on other planets and satellites in our 

solar system. 
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